
Computational Biology
(BIOSC 1540)

Nov 7, 2024

Lecture 18:
Ligand-based drug

design

1



Announcements

 is due Thursday by 11:59 pmA07
CSB exam is next Thursday (Nov 14)

Study guide will be posted tonight or tomorrow
We will have a review session on Tuesday (Nov 12)
Request DRS accommodations if needed

 will be due Dec 10Project
OMETs will be coming out soon
Attending our optional Python lectures are strongly
recommended if you are taking simulation on modeling
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https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/07/
https://pitt-biosc1540-2024f.oasci.org/assessments/project/


After today, you should have a better understanding of

The basic principles of ligand-based drug design and how

it differs from structure-based approaches.

3



Structural insight into a
disease is a privilege

Phenotypic drug screening involves testing compounds
on an organism level to identify potential leads

Example: Drug screening on an
antibiotic-resistant bacterial strain
to identify potential new leads
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LBDD uses known compounds to
guide drug discovery

Ligand-based drug design (LBDD) relies on the
properties of known bioactive compounds

LBDD does not require the structure of
the target protein, making it useful when
this is unknown

Assumption: Similar structures can lead to
similar—hopefully improved—biological effects

Motivation: If we find compounds with little bioactivity,
we can use LBDD to find compounds with similar
chemical features to improve specific outcomes
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Key differences between structure- and
ligand-based drug design

Structure-Based Drug Design:

Requires 3D structure of the target protein.
Uses the binding site structure to model
potential interactions.
Often employs docking and molecular
simulations.

Ligand-Based Drug Design:

Requires no structural information of the target.
Uses the chemical structure and activity of
known ligands as guides.
Relies on molecular similarity rather than direct
binding predictions.
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Chemical space exploration is still challenging,
and now we need to identify similar compounds
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After today, you should have a better understanding of

How descriptors and fingerprints evaluate

molecular similarity.
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Quantifying molecular similarity is challenging

Which group of molecules should we
pursue for increased bioafinity?

Group A Group B

With your neighbors, determine how you would
choose the group of molecules to pursue.

Suppose we performed an experimental high-throughput
screen and identified these potential leads

ActivesDecoys
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Molecular descriptors numerically
encode chemical properties

Computed with SwissADME

LogP 4.08 4.30

Measures lipophilicity, which influences a molecule's ability to cross cell membranes and affects absorption and bioavailability.

Molar Refractivity 156.23 134.72

Relates to polarizability and electron cloud distribution, affecting intermolecular interactions and binding affinity.

TPSA  122.76 Å² 102.93 Å²

Estimates the molecule’s ability to form hydrogen bonds, impacting solubility and permeability across biological membranes.

Molecular weight 565.09 g/mol 475.97 g/mol

Indicates the overall size of the molecule, impacting drug distribution and elimination rates in the body.
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Num. rotatable bonds   10 8

Reflects molecular flexibility, which can influence binding affinity and oral bioavailability.

http://www.swissadme.ch/index.php


Molecules can have similar properties, with slight
structural differences causing widely different functions

Computed with SwissADME

Dopamine                   is a naturally occurring
neurotransmitter in the brain and
interacts with dopamine receptors

Molecular weight

LogP

Molar Refractivity 

TPSA  
Num. rotatable bonds   

Molecular weight

LogP

Molar Refractivity 

TPSA  

SMILES

Phenylephrine                          is a synthetic compound that
acts as a vasoconstrictor by stimulating
alpha-adrenergic receptors

Simple descriptor comparisons are not sufficient for
computing molecular similarity

Phenylephrine
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167.21 g/mol

0.65

47.01

52.49 Å²
3

CNC[C@@H](C1=CC(=CC=C1)O)O

Dopamine

153.18 g/mol

0.46

42.97

66.48 Å²
2

C1=CC(=C(C=C1CCN)O)O

http://www.swissadme.ch/index.php


Molecular fingerprints encode structural information

Phenylephrine

Dopamine

Extended Connectivity Fingerprints (ECFPs) encode
structural features into numerical representations 

10011000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000001000000000000000000001000000
00000000000000000000000000000000000000000000000000001000000000001000000000000000000000000000000000000000000000000010000000000000
00000000000000000000000000100000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000100000000000000000000000000000000000000000000000000001000000000000100000000000000000001000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000001000000000000100100000000000000000000000000001000000001000000100000000000000000000000000
00000100000000000000001000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001001001000000

10011000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000100000000000000000000000000000000000000010000000100000010000000000000000000000000010
00000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000010000000000000000000000
00000000000000000000000000000000000010001000000000100101000000000000000000000000000000000100000000000000000000000000000000000000
00000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001001000000000

from rdkit import Chem
from rdkit.Chem import rdFingerprintGenerator
fmgen = rdFingerprintGenerator.GetMorganGenerator(
  radius=3, fpSize=1024,
  atomInvariantsGenerator=rdFingerprintGenerator.GetMorganFeatureAtomInvGen()
)
mol = Chem.MolFromSmiles("C1=CC(=C(C=C1CCN)O)O")
print(fmgen.GetFingerprint(mol))

1
2
3
4
5
6
7
8

How do we compute this?
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For each heavy atom (i.e., not H), hash atom-specific properties

ID =0 hash(Z ,V ,C ,R ,…)i i i i

Z

V

C

R

Atomic number

Valence

Formal charge

Ring membership

ID0

Iteration 0
identifier

id10_iter0 = hash((6, 3, 0, 1)) 
print(id10_iter0)  # 7468469475583712974

Let's look at carbons 6 and 10

Because of the same element and connectivity,
they have the same ID0

id6_iter0 = hash((6, 3, 0, 1)) 
print(id6_iter0)  # 7468469475583712974

Hash functions are used to encode chemical information
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"Encoding" is a computational term for transforming
information in a numerical format for computers



For each additional iteration of n, incorporate the hashes
of connected atoms that are n bonds away

id10_iter1 = hash(( 
    1, 7468469475583712974, # ID for atom 10 
    1, 901285887933171736,  # ID for atom 5 
    2, 7468469475583712974  # ID for atom 9 
)) 
print(id10_iter1)  # 9113858623660175530

id6_iter1 = hash(( 
    1, 7468469475583712974, # ID for atom 6 
    2, 901285887933171736,  # ID for atom 5 
    1, 901285887933171736   # ID for atom 7 
)) 
print(id6_iter1)  # -1070477880882296059

Each iteration encodes local chemical
information into each atom's ID

We can repeat the process for larger n,
which captures more chemical information
at a (small) computational cost

Repeat for all atoms while hashing n - 1 IDs

Next, encode the atom IDs that are exactly one bond away

Format: (IterationNumber, AtomID, BondOrder1, AtomID1, BondOrder2, AtomID2, ...)
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We keep track of atom IDs at each iteration to encode
multiple "levels" of chemical information

# Iteration 0 
[-96873481, -5237400, -608624, -40896092, 13106358, 39304191, 
13106358, 39304191, 39304191, 39304191, 18495798, 18495798] 
 
# Iteration 1 
[-12887828, 34836456, -82428984, -76182021, 57441373, 18535308, 
36698099, -16062189, -71082609, -16062189, -13803757, -35226747] 
 
# Iteration 2 
[-30242937, -22342045, -3701095, -83323106, -81401022, -79585126, 
259777, -18164777, -83853893, -9624634, -63890015, -86218719] 
 
# Iteration 3 
[24482285, -67056973, -1049934, 58183281, 9686245, 65319696, 
-89546467, 90525418, -96278682, -31838946, -41820336, -42202112]

# Iteration 0 
[39304191, 39304191, 13106358, 13106358, 39304191, 13106358, 
-608624, -608624, -2248911, 18495798, 18495798] 
 
# Iteration 1 
[-16062189, -16062189, -54942758, -54942758, 18535308, 80518135, 
-46276084, 85303560, -4225841, -13803757, -13803757] 
 
# Iteration 2 
[45202524, -32527659, 91315393, -86313403, 74663225, 43056615, 
-92441264, 61456743, 35268850, -86729888, -86729888] 
 
# Iteration 3 
[17051553, -83857497, -10864101, 42020134, 84228020, 88509243, 
53634925, 58427327, 85169475, -62345869, -23012595]

Similar structural features will share atom IDs
until our iteration starts incorporating different structural features
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Atom IDs are encoded into a bit array

We can get a collection of atom IDs, but how would we rapidly
compare molecules with different number of atoms?

We use bit arrays, which are fixed-length collections of ones and zeros 10101100

    10101100 
AND 11011010 
    -------- 
    10001000

11011010

This allows efficient operations

    10101100 
OR  11011010 
    -------- 
    11111110

Features that are in both molecules

Features that are in either molecules
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Converting atom IDs to bit arrays 

ecfp = [0, 0, 0, 0, ..., 0, 0, 0]

-1070477880882296059 % 1024 = 908

Decide on length of bit array, for example,
1024 and fill with zeros

Divide each atom ID by the length of the
array and determine the remainder

Set the value of the bit array at that index to 1 ecfp[908] = 1

10011000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000001000000000000000000001000000
00000000000000000000000000000000000000000000000000001000000000001000000000000000000000000000000000000000000000000010000000000000
00000000000000000000000000100000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000100000000000000000000000000000000000000000000000000001000000000000100000000000000000001000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000001000000000000100100000000000000000000000000001000000001000000100000000000000000000000000
00000100000000000000001000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001001001000000

10011000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000100000000000000000000000000000000000000010000000100000010000000000000000000000000010
00000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000010000000000000000000000
00000000000000000000000000000000000010001000000000100101000000000000000000000000000000000100000000000000000000000000000000000000
00000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000001001000000000
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Tanimoto similarity compares the ECFPs
between two molecules

Using bit operations, we can compute similarity using Tanimoto

Tanimoto similarity =
a+ b− c

c

 is the number of bits set to 1 in vector A.
 is the number of bits set to 1 in vector B.
 is the number of bits set to 1 in both vectors A and B (the intersection).

a

b

c

This formula measures the ratio of the shared features to the total
number of unique features between two molecules.

a = len(fp1_bits) 
b = len(fp2_bits) 
c = len(fp1_bits & fp2_bits)

Molecular similarity: The concept that similar molecules often show similar biological effects.

18



Tanimoto similarity ranges

Phenylephrine

Dopamine

How similar does ECFPs and Tanimoto
say these molecules are?

33%
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After today, you should have a better understanding of

How QSAR models predict biological activity

based on molecular structure.
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QSAR models link chemical
structure with biological activity

Purpose: To predict the biological activity of molecules based on their structure.

Motivation:

Reduces the need for experimental screening.
Helps identify potential drugs quickly and cost-effectively.

Example: Predicting if a compound is likely to be an inhibitor
of a target enzyme based on known inhibitors.

Types of QSAR Models:

1. Linear Models: Simple, interpretable, e.g., linear regression.
2. Nonlinear Models: Capture complex relationships, e.g., neural networks.
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Developing a QSAR model follows
systematic steps

Data Collection: Gather biological activity and
molecular data.
Descriptor Calculation: Calculate numerical
descriptors for each molecule.
Model Selection and Training: Use machine
learning to correlate descriptors with activity.
Model Validation: Test model accuracy with
independent datasets.
Interpretation and Application: Use the
model for predicting new molecules.
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Linear regression models are simple but
effective for QSAR analysis

Fits a linear relationship between descriptors and output

Advantages: Easy to interpret.
Limitations: Limited to linear relationships; struggles with complex datasets.

Y = β +0 β X +1 1 β X +2 2 …
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Nonlinear models capture complex
relationships in QSAR data

Examples of Nonlinear Models:

Neural Networks: Capture complex, nonlinear patterns in large datasets.
Random Forests: Effective for high-dimensional data, robust against overfitting.

Example: Predicting toxicity, where relationships between
descriptors and outcomes are often nonlinear. 24



After today, you should have a better understanding of

The role of pharmacophore modeling in identifying

essential molecular features for activity.
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Where QSAR quantifies activity,
pharmacophore modeling identifies critical

molecular features for activity
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Pharmacophore modeling defines the essential
features needed for biological activity

A pharmacophore is the 3D arrangement of molecular
features required for biological activity
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Building a pharmacophore model requires
multiple active compounds

Step 1: Align active molecules

Identify common structural features
Determine spatial relationships
Consider multiple conformations

Step 2: Define feature locations

Mark shared pharmacophoric points
Establish distance constraints
Set tolerance spheres
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Before the next class, you should

Finish 
Study for exam

A07

Lecture 18:
Ligand-based drug design

Today Tuesday

Exam 02 Review
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https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/07/

