
Computational Biology
(BIOSC 1540)

Sep 19, 2024

Lecture 08:
Read mapping

1

Announcements

 is due tonight by 11:59 pmA03

2

https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/03/

After today, you should be able to

1. Describe the challenges of aligning short reads to a large reference genome.

2. Compare read alignment algorithms, including hash-based and suffix tree-based approaches.

3. Explain the basic principles of the Burrows-Wheeler Transform (BWT) for sequence alignment.

3

We are dealing with enormous datasets

Reference genome sizes

Homo sapiens: 3,200,000,000 bp
Mus musculus: 2,700,000,000 bp
Drosophila melanogaster: 140,000,000 bp
Saccharomyces cerevisiae: 12,000,000 bp

(~3.2 GB if using u8)

RNA-seq data
Illumina RNA-seq is around 120 GB

Contextualization

The best movie ever
is only 1.2 GB

Most computers have 8 - 12 GB of RAM

4

https://knowledge.illumina.com/instrumentation/general/instrumentation-general-reference_material-list/000001508

The Trade-off: Fast vs. Precise

Performance considerations

Balancing speed and accuracy
Efficient alignment for downstream analyses
Resource management (CPU, memory)

5

After today, you should be able to

1. Describe the challenges of aligning short reads to a large reference genome.

2. Compare read alignment algorithms, including hash-based and suffix tree-based approaches.

3. Explain the basic principles of the Burrows-Wheeler Transform (BWT) for sequence alignment.

6

A spectrum of alignment strategies

Hash tables

Mid 2000s Late 2000s Late 2000s

Suffix
arrays/trees

Burrows-Wheeler
transforms

E.g., and SOAP MAQ E.g., Bowtie2, BWA,
STAR 7

https://doi.org/10.1093/bioinformatics/btn025
https://doi.org/10.1101/gr.078212.108

Hash tables link a key to a value

Keys represent a "label" we
can use to get information

Example: Contacts

Name

A "hash function" determines
where to find their number

Number

8

Hash functions convert
labels to table indices

h(k) = len(k)

Index: We take the key, count
how many characters are in it

Note: This is a bad hashing function since "Alex"
and "John" would result in the same index

Example

len("James") = 5

James 883-234-1236

9

TACGTACGATAGTCGACTAGCATGCATGCTACGTGCTAGCACGTATGCATGCATGCATGCC

Hashing our reference genome seeds
our hash table with k-mer locations

5-mers
TACGT, ACGTA, CGTAC, GTACG, . . .

Reference genome
0 10 20 30 40

TACGT

[0, 29]ACGTA

[1, 40]

k-mer location
in genomek-mer

h(k)

10

50 60

We hash our k-mer, and add the
starting index where that k-mer
occurs in our reference genome

Hashing our RNA-seq data provides
quick lookups of our reference genome

Query a k-mer read to get indices that
of possible reference genome locations

Reference genome

TACGTACGATAGTCGACTAGCATGCATGCTACGTGCTAGCACGTATGCATGCATGCATGCC
0 10 20 30 40 50 60

Hash table
TACGT

[0, 29]ACGTA

[1, 40]

k-mer location
in genomek-mer

h(k)

11

Seed-and-extend in
hash-based alignment

Seed Extend

Read: ATCGATTGCA

k-mers (k=3)
ATC, TCG, CGA, GAT, ATT,

TTG, TGC, GCA

Use hash table for rapid lookup
of potential matches quickly

Start from seed match and grow in
both directions with reference genome

CCGTATCGATTGCAGATG

GAT [7, 14]h(k)

Check to see if we can
align the read to reference

12

Hash-Based Alignment:
Divide and Conquer

A "DNA dictionary" with quick lookup and direct access to potential matches

Pros

Easily parallelizable
Flexible for allowing mismatches
Conceptually simple

Cons

Large memory footprint for index
Can be slower for very large genomes

13

Suffix trees represent all
suffixes of a given string

NA

NA$$

4 2

0

13

5

A

$ NA

$ NA$

14

Root node
(Start here)

BANANA$

A suffix tree is used to find starting index of suffix

Example: Where does
 start?NANA$ Index 2.

Edge

Node

Leaf node

Split point

Suffix start index

Next part of suffix

Nowhere.
Where does start?AANA

Note: We use $ to represent the end of a string

Suffix arrays are memory-
efficient alternatives to trees

BANANA$Requires less memory, but is also less powerful

1. Create all suffixes

BANANA$
ANANA$
NANA$

NA$
ANA$

A$
$

15

2. Sort lexicographically
3. Store starting indices in original string

BANANA$
ANANA$

NANA$
NA$

ANA$
A$
$6

5
3
1
0
2
4

Symbols come before
letters for sorting

After today, you should be able to

1. Describe the challenges of aligning short reads to a large reference genome.

2. Compare read alignment algorithms, including hash-based and suffix tree-based approaches.

3. Explain the basic principles of the Burrows-Wheeler Transform (BWT) for sequence alignment.

16

Compression reduces the amount
of data we have to store

"Alex keeps talking and talking and talking
and talking and eventually stops."Suppose we need to store this string:

How could we store this
string and save space?

"talking and talking and
talking and talking and" "talking and" 4=

"Alex keeps talking and talking
and talking and talking and

eventually stops."
"Alex keeps" + "talking and" 4

+"eventually stops."

Run-length encoding

17

Not all strings have repeats

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec iaculis
risus vulputate dui condimentum congue. Pellentesque habitant morbi

tristique senectus et netus et malesuada fames ac turpis egestas.

Can you find any repeats?

How can we force repeats?
Sorting the letters does!

.aaaaaaaaaaaabbcccccccccddddddeee
eeeeeeeeeeeeeeeeeeeefggghiiiiiiiiiiiiiiiil
lllllllmmmmmmmmnnnnnnnnnnoooo
oooopppppqqrrrrrrrssssssssssssssssst

ttttttttttttttttttuuuuuuuuuuuuuuuv

a12b2c9d6e23f1g3h1i16l8m8
n10o8p5q2r7s17t19u15v1

 Run-length encoding

18

Sorting lexicographically forces
repeats, but loses original data

The Burrows-Wheeler Transform (BWT) is a way to
sort our strings without losing the original data

(And also search through it!)

Developed by Michael Burrows and David Wheeler in 1994
19

Basic concept of BWT

1. Append a unique end-of-string (EOS) marker to the input string.
2. Generate all rotations of the string.
3. Sort these rotations lexicographically.
4. Extract the last column of the sorted matrix as the BWT output.

BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

20

BANANA$
ANANA$B

NANA$BA

ANA$BAN

NA$BANA

A$BANAN
$BANANA

ANNB$AA

BANANA

First column is more compressible,
but we lose context and reversibility

(We can also get first column by
sorting the output)

B
N
N
A

$

A
A

A
A
A
$

B

N
N

A
A
A
$

B

N
N

21

B
N
N
A

$

A
A

AN
AN
A$
$B

BA

NA
NA

AN
AN
A$
$B

BA

NA
NA

B
N
N
A

$

A
A

ANA
ANA
A$B
$BA

BAN

NAN
NA$

ANA
ANA
A$B
$BA

BAN

NAN
NA$

B
N
N
A

$

A
A

ANAN
ANA$
A$BA
$BAN

BANA

NANA
NA$B

BANANA$
NANA$BA
NA$BANA
A$BANAN

$BANANA

ANANA$B
ANA$BAN

BWT output is reversible!

1. Write BWT output "vertically"
2. Sort each row starting from the left-

most character
3. Append the same BWT output
4. Repeat until finished (length of rows

equal BWT output length)

2

3 2 32

3 2 ...

Enhancing BWT for Rapid Searching

ABRACADABRA$

ABRACADABR

$ABRACADAB

BRA$ABRACA

BRACADABRA

CADABRA$AB

DABRA$ABRA

RA$ABRACAD

RACADABRA$

ADABRA$ABR

ABRA$ABRAC

A$ABRACADA

ACADABRA$A

$

A

A

A

A

A

B

B

C

D

R

R

A

R

D

$

R

C

A

A

A

A

B

B

22

ABRACADABR

$ABRACADAB

BRA$ABRACA

BRACADABRA

CADABRA$AB

DABRA$ABRA

RA$ABRACAD

RACADABRA$

ADABRA$ABR

ABRA$ABRAC

A$ABRACADA

ACADABRA$A

$

A0

A1

A2

A3

A4

B0

B1

C0

D0

R1

R0

A0

R0

D0

$

R1

C0

A1

A2

A3

A4

B1

B0

The backward search algorithm
efficiently finds occurrences of a

pattern in a text using the LF-mapping

BWT matrix Number

Number characters with the
number of times they have appeard

F-column L-column

ABRACADABRA$ABRA

$
A0
A1
A2
A3
A4
B0
B1
C0
D0

R1

R0

A0
R0
D0
$

R1
C0
A1
A2
A3
A4

B1

B0

A R

ABRACADABR
$ABRACADAB
BRA$ABRACA
BRACADABRA
CADABRA$AB
DABRA$ABRA
RA$ABRACAD
RACADABRA$
ADABRA$ABR
ABRA$ABRAC
A$ABRACADA
ACADABRA$A 23

$
A0
A1
A2
A3
A4
B0
B1
C0
D0

R1

R0

A0
R0
D0
$

R1
C0
A1
A2
A3
A4

B1

B0

R B

ABRACADABR
$ABRACADAB
BRA$ABRACA
BRACADABRA
CADABRA$AB
DABRA$ABRA
RA$ABRACAD
RACADABRA$
ADABRA$ABR
ABRA$ABRAC
A$ABRACADA
ACADABRA$A

$
A0
A1
A2
A3
A4
B0
B1
C0
D0

R1

R0

A0
R0
D0
$

R1
C0
A1
A2
A3
A4

B1

B0

B A

ABRACADABR
$ABRACADAB
BRA$ABRACA
BRACADABRA
CADABRA$AB
DABRA$ABRA
RA$ABRACAD
RACADABRA$
ADABRA$ABR
ABRA$ABRAC
A$ABRACADA
ACADABRA$A

Suppose I want to find where is located

1. Find rows with last character in search string (e.g., A) in F-column
2. Note which rows has the next letter (e.g., R) in L-column
3. Work backwards in search string until the first letter

Backward search enables
efficient searching using only
first and last columns of BWT

24

BWT practice

Given the string "mississippi$", complete the following tasks:

Construct the Burrows-Wheeler Transform (BWT) of the string.
Use the LF-mapping to find the number and positions of occurrences
of the following patterns in the original string:

a) "si"
b) "iss"
c) "pp"

25

Before the next class, you should

Submit A03
Start A04

Lecture 09:
Quantification

Lecture 08:
Read mapping

Today Tuesday

26

