

# **Computational Biology** (BIOSC 1540)

#### Lecture 04: De novo assembly

Sep 5, 2024



### Announcements

- A01 is due tonight at 11:59 pm
- A02 will be released tomorrow and due next Thursday



# We are putting our computer algorithm hats now





### After today, you should be able to



#### 1. Explain the fundamental challenge of reconstructing a complete genome.

- 2. Describe and apply the principles of the greedy algorithm.
- 3. Understand and construct de Bruijn graphs.



This is just alignment with extra steps (our topic for next Thursday)

What is done 99% of the time

# Repeats and high coverage are the main challenges



### After today, you should be able to



- 1. Explain the fundamental challenge of reconstructing a complete genome.
- 2. Describe and apply the principles of the greedy algorithm.
- 3. Understand and construct de Bruijn graphs.

## Let's formulate our problem

Suppose we have a collection of strings (i.e., reads)BAAAABBBAABA(In CS, we call a sequence of characters a string)ABBBBBAAABAB

We want to assemble these strings into a **single, continuous string** (i.e., contig)

What's the easiest way? **Concatenate** 



# Suppose we want the shortest superstring

BAAABBBAABAABBBBBAAABAB

This is a valid superstring, but why would we want the shortest?

Talk with your neighbors



**Overlap maximization** 

**Repeat resolution** 

**Evolutionary pressure** 

- Reduces redundancy
- Maximizes confidence with highest overlaps

Resolves repeats by favoring collapsed arrangements

Most genomes have selective pressure to be efficient



# What happens if we have a tie?



Talk with your neighbors



# Tie breakers are a personal preference

First encountered, first merged

The one you found first

**Highest quality base calls** 

Use sequence with highest quality

**Highest coverage** 

Whichever results in more coverage

Look ahead

Do both and evaluate consequences

Exclude

Be petty and don't merge them (separate contigs)

# Being greedy makes genome assembly tractable



Rounds of merging, one merge per line.

Number in first column = length of overlap merged before that round.

## Let's get some practice being greedy

ABA ABB AAA AAB BBB BBA BAB BAA

For ties, choose the one you found first

– Input strings – ABA ABB AAA AAB BBB BBA BAB BAA BAAB ABA ABB AAA BBB BBA BAB BABB BAAB ABA AAA BBB BBA BBAAB BABB ABA AAA BBB In red are strings that get BBBAAB BABB ABA AAA merged before the next round BBBAABA BABB AAA BABBBAABA AAA Greedy answer: BABBBAABAAA BABBBAABAAA BABBBAABAAA ⊢ Superstring – Actual SCS:

AAABBBABAA

### **Repeats ruin our assembly**

Let's take a string, and cyclically permute it with k = 6

a\_long\_long\_long\_time

ng\_lon \_long\_ a\_long long\_l ong\_ti ong\_lo long\_t g\_long g\_time ng\_tim ng\_time ng\_lon \_long\_ a\_long long\_l ong\_ti ong\_lo long\_t g\_long ng\_time g\_long\_ ng\_lon a\_long long\_l ong\_lo long\_t ng\_time ong\_lon long\_ti g\_long\_ a\_long long\_l ong\_lon long\_time g\_long\_ a\_long long\_l long\_lon long\_time g\_long\_ a\_long long\_lon g\_long\_time a\_long long\_long\_time a\_long a\_long\_long\_time a\_long\_long\_time a\_long\_long\_time

### Longer reads and genome assembly

#### k = 8 a\_long\_long\_time

long\_lon ng\_long\_\_long\_lo g\_long\_t ong\_long g\_long\_l ong\_time a\_long\_l \_long\_ti long\_time long\_time long\_lon ng\_long\_\_long\_lo g\_long\_t ong\_long g\_long\_l a\_long\_l \_long\_time a\_long\_lo long\_lon ng\_long\_ g\_long\_t ong\_long g\_long\_l \_long\_time ong\_long\_ a\_long\_lo long\_lon g\_long\_t g\_long\_l g\_long\_time ong\_long\_a\_long\_lon g\_long\_l g\_long\_time ong\_long\_l a\_long\_lon g\_long\_time a\_long\_long\_l a\_long\_lon g\_long\_time a\_long\_long\_l a\_long\_long\_long\_time a\_long\_long\_time a\_long\_long\_time

By having one read span all three "long"s, we prevented a collapse a\_long\_long\_time

# Greedy assembly is not used in practice

It just helps us understand our problem

### After today, you should be able to



- 1. Explain the fundamental challenge of reconstructing a complete genome.
- 2. Describe and apply the principles of the greedy algorithm.
- 3. Understand and construct de Bruijn graphs.

# Graphs is a data structure for drawing relationships between items



Represents a single entity

- Person
- Location
- Protein
- Sequencing read



Edge

Represents a connection (possibly with a direction)

- Instagram follower
- Flights
- Protein-protein interaction
- Sequence overlap

# Genome assembly uses direct edges to specify overlap and concatenation

Let's build a **directed multigraph**:

"tomorrow and tomorrow and tomorrow"

 Each unique k-mer is a node
Add directed edges for each overlap and concatenation

K-mer is a substring of length k



down just unique words)

# Building k-mers from a string

Spectrum with k = 3 **GGCGATTCATCG** 

- 1. Slice first k characters
- 2. Shift right one character
- 3. Repeat

GGC GCG CGA GAT ATT TTC TCA CAT ATC TCG

All 3-mers

# Build a De Bruijn graph with k-1 nodes

#### 5' AATGGCGTA 3'



**Step 2:** Take left and right k-1 mer and make two connected nodes **Repeat** 



22

# **De Bruijn practice**

Build a De Bruijn graph with k = 3

**CGTAAAT** 





### De Bruijn graphs with multiple reads



Wait, what happend? This is not Eulerian

**Circular genomes are not Eulerian** 

### Redo, but make it not circular



### We can add weights to edges



Errors dramatically increase the number of edges and unconnected graphs



#

32 *k*-mers

occur once

5

15

k-mer count

10

20

25

27

### Errors affect k-mer counts



### **Error correction**

*k*-mer counts when errors are in different parts of the read:







## Before the next class, you should

#### Lecture 04:

De novo assembly

Lecture 05:

Gene annotation



• Start Assignment 02, which is due Thursday at 11:59 pm.