Computational Biology
(BIOSC 1540)

Lecture 04:
De novo assembly

‘0

Sep 5, 2024 j

University of
:J Pittsburgh,

Annhouncements

e AOT is due tonight at 11:59 pm
e AO2 will be released tomorrow and due next Thursday

https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/01/
https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/02/

We are putting our computer
algorithm hats now

After today, you should be able to

1. Explain the fundamental challenge of reconstructing a complete genome.
2. Describe and apply the principles of the greedy algorithm.

3. Understand and construct de Bruijn graphs.

O
{/L\‘%/ Next—generegn
Genomic DNA DNA sequencing

RESEQUENCING
H

Align reads to reference genome
and identify variants

This is just alignment with extra steps
(our topic for next Thursday)

...AGCCATTAG...

...CATTCAGTAG... ...AGCCATTAG...

...GGTAGTTAG... ...GGTAGTTAG...
...GGTAAACTAG...

Millions-billions of reads
~30-1,000 nucleotides

De Novo ASSEMBLY

Construct genome sequence
from overlaps between reads

What is done 99% of the time

Repeats and high coverage are
the main challenges

Unique sequence Repeat Repeat Repeat Unique sequence
[—————a—____ = e (e = w = =4 | —————"
[————] == === = r=——— _——
[=—F1-—— m— | o] EEE— — e Y——"
¢ I e 41 :

ap
e S ee—— d————
f———————] N L B _—
EE——————- S S T e e ———
s A E——
A ——1
e ——|
]
e—

High coverage

After today, you should be able to

2. Describe and apply the principles of the greedy algorithm.

3. Understand and construct de Bruijn graphs.

Let's formulate our problem

Suppose we have a collection of strings (i.e., reads) BAA AAB BBA ABA
(In CS, we call a sequence of characters a string) ABB BBB AAA BAB

We want to assemble these strings into a What's the easiest way?
single, continuous string (i.e., contig) Concatenate

BAAAABBBAABAABBBBBAAABAB

/ Done! Right?

This is called a Well, no.
"superstring"

Suppose we want the
shortest superstring

This is a valid superstring, but

BAAAABBBAABAABBEEBAAABAB why would we want the shortest?

0 7
PN
Talk with your neighbors -
J?
Overlap maximization Repeat resolution Evolutionary pressure

e Reduces redundancy Resolves repeats by
e Maximizes confidence favoring collapsed
with highest overlaps arrangements

Most genomes have selective
pressure to be efficient

Merge strings by highest overlap

Concatenated: BAAAABBBAABAABBBBBAAABAB
Overlapped: AAABBBABAA
AAA
AAB
We can arrange the strings AggB Great! That was easy
with overlaps of two BBA
BAB
ABA
BAA

Procedure

1. Merge strings one at a time
keeping a consistent 5' and 3'

2. Always merge the largest overlap

3. Repeat

AGATTAT

AGATTATGGC

10

What happens if we have a tie?

ACGTAA 5

CGTAAT

ACGTAA 5 CGTAAC
TAACGT [4,4| ACGTAAC
ACGTAACGT Length =9

TAACGT

4 ACGTAAT

TAACGTAAT

Talk with your neighbors

=/

11

Tie breakers are a personal preference

First encountered, first merged The one you found first
................. nghestquahtybaseca"sUsesequencev\”thhlghestqua“ty
......................... nghestcoverageWhICheverresmtsmmorecoverage
.............................. LOOkaheadDObOthandevaluateconsequences
.................................. E xcmdeBepEttyanddontmergEthem

(separate contigs)

12

Being greedy makes
genome assembly tractable

: Input strings !
ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC TATATTG GTACGGC GCGTACG ATATTGC
TATATTGC ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC GTACGGC GCGTACG
CGCGTACG TATATTGC ATTATAT ATTGCGC GCATTAT ACGGCGC GTACGGC

CGCGTACG TATATTGCGC ATTATAT GCATTAT ACGGCGC GTACGGC

CGCGTACGGC TATATTGCGC ATTATAT GCATTAT ACGGCGC

CGCGTACGGCGC TATATTGCGC ATTATAT GCATTAT

CGCGTACGGCGC GCATTATAT TATATTGCGC

CGCGTACGGCGC GCATTATATTGCGC

GCATTATATTGCGCGTACGGCGC

GCATTATATTGCGCGTACGGCGC

—>Superstring ——i

wultun v g Oh

Rounds of merging, one merge per line.
Number in first column = length of overlap merged before that round.

13

Let's get some practice being greedy

ABA ABB AAA AAB BBB BBA BAB BAA

For ties, choose the one you found first

- Input strings -
ABA ABB AAA AAB BBB BBA BAB BAA

BAAB ABA ABB AAA BBB BBA BAB

BABB BAAB ABA AAA BBB BBA

BBAAB BABB ABA AAA BBB In red are strings that get
BBBAAB BABB ABA AAA
BBBAABA BABB AAA
BABBBAABA AAA

merged before the next round

G :
BABBBAABAAA B;eBeBdBﬁl;swer
BABBBAABAAA AAA
—Superstring — Actual SCS:

AAABBBABAA

14

Let's take a string, and cyclically
permute it with k=6

ng_lon _

ng_time
ng_time
ng_time
ng_time
ong_lon

Repeats ruin our assembly
a_long_long_long_time

long_ a_long long_1 ong_ti ong_lo long t g long g time ng_tim
ng_lon _long_a_long long_ 1l ong_ti ong _lo long t g long

g _long_ ng_lon a_long long_1l ong ti ong_lo long t

long_ti g long_ng lon a_long long_ 1 ong lo

ong_lon long ti g long_ a_long long_1

long_time g _long_a_long long 1

long_lon long_time g long_a_long

long_lon g _long time a_long

long long time a_long

a_long_long_time

a_long _long_time We are missing a "_long". Why?

15

Longer reads and genome assembly
k=8 a_long_long_long_time

long lon ng_long__long lo g long t ong long g long 1 ong time a_long 1 _long ti long tim
long_time long_lon ng_long_ _long lo g long t ong_long g long 1 a_long_ 1 long ti
_long_time long_lon ng_long_ long lo g long t ong_long g long 1 a long 1

_long_time a_long_lo long lon ng long g long t ong long g long 1

_long_time ong_long_ a_long_lo long_lon g long t g long 1

g long time ong_long_a long lo long lon g long 1

g long time ong _long a_long lon g long 1
gﬁgggzﬁmz Zi?giéfgigiilnng—m We get the correct string back, but how did
a_long_long_long_time increasing our k fix this?
a_long_long_long_time

_ a_long long long time
By having one read span all three "long"s,

we prevented a collapse g_long_l

16

Greedy assembly is not
used in practice

After today, you should be able to

3. Understand and construct de Bruijn graphs.

18

Graphs is a data structure for drawing
relationships between items

O

Node

Represents a connection

Represents a single entity (possibly with a direction)

e Person e Instagram follower
. Location e Flights
e Protein e Protein-protein interaction

e Sequencing read e Sequence overlap

19

Genome assembly uses direct edges to
specify overlap and concatenation

Let's build a directed multigraph: "tomorrow and tomorrow and tomorrow"

1. Each unique k-mer is a node
2. Add directed edges for each
overlap and concatenation

K-mer is a substring
of length k

)

tomorrow and

—/

(We will cheat here and write
down just unique words)

20

Building k-mers from a string

Spectrum with k=3

1. Slice first k characters
2. Shift right one character
3. Repeat

GGCGATTCATCG

GGC
GCG
CGA
GAT
ATT
TTC
TCA
CAT
ATC
TCG

All 3-mers

21

Build a De Bruijn graph with k-1 nodes

5 3
Step 1: Build k-mers AATG ATGG TGGG
Let'suse k=4 GGCG GCGT CGTA

Step 2: Take left and right k-1 mer and make two connected nodes

Repeat
] AATG R TGGG GCGT
Y\ Y\ v\
AAT — ATG—TGG— GGC — GCG — CGT — GTA
N / N/ \ /
ATGG GGCG CGTA
Semi-balanced has Graph is Eulerian if it A node is balanced if

difference of 1 contains <= 2 of these indegree equals outdegree

22

De Bruijn practice

Build a De Bruijn graph with k =3

CGTAAAT
CGT TAA AAT
CG—GT — TA — AA — AT
GTA LD
AAA

De Bruijn graphs with multiple reads

Read 1 , Read 2
Let'susek=4 . oA AAT 3"
AAT — ATG —>TGG—> GGC — GCG —> CGT — GTA—>TAA — AAA
N A

Wait, what happend? This is not Eulerian

Circular genomes are not Eulerian

24

Redo, but make it not circular

Read 1 Read 2 Read 3
5' CGTAAAG 3' 5' TAAAGGCGAA3'

Edges on walk extend

the contig CGA — GAA 0ver|ap
— — —
AAT ATG—TGG— GGC GCG CGT — GTA—TAA — AAA — AAG
— l
AGG
_/
More than two semi- Cannot walk along

is this not Eulerian?
Why is this not Euleria balanced nodes each edge once

25

We can add weights to edges

Read 1 Read 2 Read 3
5' CGTAAAG 3' 5' TAAAGGCGAA3'

1
1 CGA—GAA

1 1 1 2 7 2 1 2 2
AAT — ATG —TGG—> GGC — GCG —> CGT — GTA—TAA —> AAA — AAG

|

AGG

Still not Eulerian, but we can walk it

If there was no overlap, then we would
have some unconnected graphs

26

Errors dramatically
Increase the number
of edges and
unconnected graphs

v o
8 E-
© &
Q
- |
Q' o
(18] =)
— o |
o 3
C b ol
—_
5 _|
| .
@ g
Q S 4
QO 3
+H
O p—
I l l !
10 20 30 40
o
S |
8 | o« ~ 9.6Kk-mers —— Error-free
= occur once —— 0.1% error
3 o
Q 8 _
e 8
m
£
c 8
= o 7
; w
w
2 g
J" <
°
£ o
B 8
- o™
+
o
P
32 k-mers
occur once

k-mer count

27

Errors affect k-mer counts

Read: = GCGTATTACGCGTCTGGCCT (20 nt) Read:
GCGTATTA: 8
CGTATTAC: 8
GTATTACG: 9
Ti;;iﬁggé 91@ # times each 8-mer
TTACGCGT: 10 ?kccurs in the reacilﬁsl.)
8-mers: \ TACGCGTC: 11 \ < Mercountpromie

ACGCGTCT: 11
CGCGTCTG: 10
GCGTCTGG: 10
CGTCTGGC: 11
GTCTGGCC: 9
TCTGGCCT: 8

All 8-mer counts are near
average, suggesting read is
error-free

GCGTACTACGCGTCTGGCCT

GCGTACTA: 1
CGTACTAC: 2
GTACTACG: 1
TACTACGC: 1
ACTACGCG: 2
CTACGCGT: 1
TACGCGTC: S
ACGCGTCT: 8
CGCGTCTG: 16
GCGTCTGG: 10
CGTCTGGC: 11
GTCTGGCC: 9
TCTGGCCT: 8

k-mer count profile has
corresponding stretch of
below-average counts

Below average

Around average

28

Error correction

k-mer counts when errors are in different parts of the read:

GCGTACTACGCGTCTGGCCT GCGTATTACACGTCTGGCCT GCGTATTACGCGTCTGGTCT

GCGTACTA: 1 GCGTATTA: 8 GCGTATTA: 8
CGTACTAC: 3 CGTATTAC: 8 CGTATTAC: 8
GTACTACG: 1 GTATTACA: 1 GTATTACG: 9
TACTACGC: 1 TATTACAC: 1 TATTACGC: 9 2
ACTACGCG: 2 ATTACACG: 1 ATTACGCG: 9 o
CTACGCGT: 1 TTACACGT: 1 TTACGCGT: 12 L. These probably
TACGCGTC: 9 TACACGTC: 1 TACGCGTC: 9 8 . overlap an error
ACGCGTCT: 8 ACACGTCT: 2 ACGCGTCT: 8
CGCGTCTG: 190 CACGTCTG: 1 CGCGTCTG: 10 S L
GCGTCTGG: 18 ACGTCTGG: 1 GCGTCTGG: 10 | T 1 1
CGTCTGGC: 11 CGTCTGGC: 11 CGTCTGGT: 1 2 4 6 8
GTCTGGCC: 9 GTCTGGCC: 9 GTCTGGTC: 2

TCTGGCCT: 8 TCTGGCCT: 8 TCTGGTCT: 1 k-mer position

Error correction should

CTITICA

GGGACTC

OCGGGACT

TITTCAT
remove most tips & islands; T
TITCATT
rest can be removed here, "Tin" gy
. ip &,
leveraging graph structure M
GTCATTC = S—
IIISIandII TCATICT TGA
CATICTG -
oo
TCTGACG . %
ATTCTE -
% — GacTaC k8 JOACTGO I = == i
~ TGCAACT pp—— TGACTG G g T .. : — —
GOACGOG “ =
GOTTCTG
GUACGIA BROGCAA W s py—
— GCRAC TGOAACG m m
e 7 CAGCTTC GOOGGTT "
..... A 1 . 4
CAGAAAA AAC ;
e ACGOTTA m - 5 ATTT 17,
— GATATTC
GTATTTI
AACTIC
CAACGGE I AACGEAT "%
=, 1 ATTTIT a—— b R
% P e CGAACTT y
FRETER QRATAT ——
GOTTOC : !
ACGGOCA e HAACGY A GAACT
% & ' fooaTa
T TIGECE
COGOCAA o S ATA
COAAC »
% L TITGCCT

30

CGOCG

Maternal

<
GTAGTCTCGGCATATGCGCCG ﬂﬂb

GTAGTCTCGGTATATGCGCCG

Paternal

GTAGT

31

Before the next class, you should

Lecture 04: Lecture 05:
De novo assembly Gene annotation
S ¢
Today Tuesday

e Start Assignment 02, which is due Thursday at 11:59 pm.

32

